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Abstract
In a recent paper (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15
5865) we confirmed Feynman’s hypothesis on how circular vortices can be
created from an oppositely polarized linear pair in a Bose–Einstein condensate.
This was done by perturbing the original pair numerically, so that a circular
vortex (or array of identical circular vortices) was created as a result of
reconnection. These circular vortices were then checked against known
theoretical relations binding velocities and radii. Agreement to a high degree
of accuracy was found. Here in part II, we give examples of the creation of
several different vortices from one linear pair. All are checked as above. We
also confirm the limit of separation of the line vortices below which mutual
attraction, followed by annihilation, prevents the Feynman metamorphosis.
Other possible modes of behaviour are illustrated.

1. Introduction

The experimental realization of Bose–Einstein condensation in alkali metal gases has renewed
interest in all aspects of these media. The formation and dynamics of vortices is at the forefront
of this effort. However, much of interest can be found in classical helium 4 work. In this context,
almost half a century ago, Feynman [1] postulated that two oppositely polarized line vortices
in a Bose–Einstein condensate (BEC) could cross at two points and then reconnect so as to
create a circular vortex. This vortex would next snap off and live a life of its own. (This was
also assumed to be possible for two opposite parallel segments of one very large vortex. In fact
the illustration in the original paper pictures just this situation.) This hypothesis was used in
the literature but not proven until recently. It was proven in [2], henceforth referred to as part I.
However, several initial steps were required, as outlined there [3–7]. We will now broaden the
analysis of part I by giving examples of the creation of two or more different circular vortices
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when the linear antecedents cross at three or more points. We will also find that there is a
limit to how close the linear vortices can be in terms of the healing length, before they attract
each other and rapid annihilation results. No circular vortices emerge in this last mentioned
scenario.

This paper can be read independently of part I.

2. Basic equations

A single-component BEC can be described by a single-particle wavefunction of N bosons of
mass m that obeys the equation formulated independently by Gross and Pitaevski [8, 9] and
now carries both of their names:

ih̄
∂ψ

∂ t
= − h̄2

2m
∇2ψ + W0ψ|ψ|2. (1)

Here W0 characterizes the potential between bosons, assumed positive in our treatment. Both
opposite linear pair and circular vortex solutions that are stationary are known [3]. Each
solution has a unique velocity perpendicular to the vortex plane. So as to give a universal
curve for the dependence of this velocity on the radius for a circular vortex, we remove the
coefficients in equation (1) by rescaling. To do this we introduce the transformation (µ is the
chemical potential, ρ0 the background density)

ψ → √
ρ0e−iµt/h̄ψ, x → h̄√

2µm
x, t → h̄

2µ
t, µ = W0ρ0, (2)

and obtain

2i
∂ψ

∂ t
= −∇2ψ − ψ(1 − |ψ|2). (3)

The unit of length introduced in equation (2) is known as the healing length. If we write
ψ = ρ1/2eiS , then ρ and v = ∇S have a fluid interpretation (e.g. the usual equation of
continuity is satisfied). However, if we encircle ψ = 0 once, S must increase or decrease by
±2nπ so ψ is single valued. This implies quantization of the circulation. Here we consider
n = 1. Although this quantization is of course absent in classical vortices, many phenomena
are similar. However, reconnection in the absence of dissipation is not, as it could not occur
in a classical fluid (forbidden by the Kelvin–Helmholtz theorem).

The theoretical dependence of the radius on the velocity for circular vortices with n = 1
can be seen in figure 1 (for theory see part I). The speed of sound U = 1/

√
2. This is also an

upper limit for U for all vortices, linear and circular (in fact both species were seen in [3] to
disappear at slightly lower values of U ).

3. Creation of sundry circular vortices from linear pairs

As initial condition, we took a two-line-vortex configuration (y is cyclic so far):

ψ(t = 0) = r1r2√
r2

1 + b2
√

r2
2 + b2

ei(θ1+θ2), (4)

where

r2
1 = (1 − 2V 2)(x + a)2 + z2, r2

2 = (1 − 2V 2)(x − a)2 + z2,

tan θ1,2 = z√
1 − 2V 2(a ± x)

.
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Figure 1. Radii of emerging circular vortices as a function of their velocities along z. Continuous
curve: theory as follows from Jones and Roberts [3]; combined with large R theory of Roberts
and Grant [3]. This combined curve appears in part I. Circles correspond to ring vortices, as found
in part I; triangle, in this paper, figure 2; squares, figure 3; diamonds, figure 4; asterisks, figure 5;
snakes, figure 8.

This model is discussed in part I. Once a is chosen, we fit V and b so as to approximate a solution
following table 2 of the first reference of [3]. Other models, based on Padé approximants, that
fit best at the mid-point between vortices, are now known [10]. Regardless of the merits of
different models, we have found that the emergence of circular vortices was not sensitively
dependent on the details of the initial condition. We perturbed the line vortices away from
their plane (along z) with wavelengths of the perturbation a few times the separation, as can be
seen in the figures. Thus we trigger the Crow instability studied theoretically for the Gross–
Pitaevski equation and in the long wavelength limit [4]. (Although we have reservations about
the calculation, the end result seems to be correct; see the comment following reference [4].)
It was found that only a perturbation away from the plane of the vortices leads to an instability
(bending towards increasing z). The nonlinear effect of this instability was reconnection as in
figures 2–6.

Each emerging circular vortex oscillated initially. The amplitudes of these oscillations
decreased until more or less stationary circular vortices emerged.

Figures 2–6 illustrate examples of the emergence of one to twelve circular vortices, depend-
ing on the wavelength of the initial perturbation. This initial perturbation along cyclic y was
always such that at least one whole wavelength corresponded to the height of the box, though
this height was varied from case to case. The dependence of radii on velocities along z for
emerging circular vortices is shown in figure 1. This figure strengthens the conclusion of part I,
namely that circular vortices, if created, satisfy known theoretical relations between U and R.

Figure 7 illustrates the annihilation of two line vortices when a < acr � 0.85 [11].
Figure 8 pictures the collision and fusion of two circular vortices. Points in (U, R)

parameter space corresponding to situations both before and after the fusion are also shown
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(a) (b)

(c) (d)

Figure 2. Emergence of a circular vortex (repeated periodically) as a result of the Crow instability
of two oppositely polarized linear vortices. The instability is induced numerically. Here a = 2.5.
The densities shown are 0.6 in first frame (for better visualization), 0.2 in the rest. Times are 0,
105, 125, 230. The distance between consecutive tick marks is five healing lengths in this and the
following figures.

(a) (b)

(c) (d)

Figure 3. Emergence of two different pairs of circular vortices. The half-distance a = 2.5.
Densities are 0.15, 0.2, 0.2, 0.2. Consecutive times are 0, 125, 150, 170.
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(a) (b)

(c) (d)

Figure 4. Emergence of five vortices (from each wavelength of the perturbation), a = 2.5.
Densities are 0.6, 0.35, 0.35, 0.35. Times are 0, 190, 235, 255.

(a) (b)

(c) (d)

Figure 5. Emergence of several circular vortices (eight), a = 2.5. Densities are 0.5, 0.25, 0.33,
0.25. Times are 0, 145, 200, 230.
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(a) (b)

(c)

Figure 6. Emergence of twelve circular vortices from one wavelength of the perturbation, a = 2.5.
Densities are 0.6 and 0.4. Times are 0 and 270, the latter two frames picturing different perspectives
of the same configuration for clarity.

(a) (b)

Figure 7. Mutual annihilation of two line vortices. According to the theory of [11], this happens
if a < acr � 0.85. Here a = 0.7. Times are 0 and 5. Note the difference in timescale as compared
to the other phenomena described here.

in figure 1. This type of fusion has been observed before [6], but we now see that all three
participating vortices approximately satisfy the U, R dependence of known stationary solutions
to equation (3) as found in the two references of [3]. This is the case once we are well away
from the collision.

Figure 9 illustrates the rotation of two identically polarized line vortices, well known from
classical fluid dynamics (see [12]). For them the denominator on the right-hand side of the
last member of equation (4) would have a term x ± a.

Numerical details of our calculations can be found in part I.
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(a) (b)

(c) (d)

Figure 8. Collision and fusion of circular vortices (first and third from the top). The original
half-distance a = 2.5. Densities are 0.35, 0.3, 0.27, 0.26. Times are 0, 175, 225, 275.

(a) (b)

(c)

Figure 9. Rotation of two identically polarized line vortices around their mid-point, just as in a
classical fluid. Note that a ≈ 3.73 throughout. The period of the rotation is T = 190.
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4. Summary

In part I we demonstrated how two oppositely polarized line vortices can cross at two points
and next produce a robust, circular vortex. It was seen to satisfy known relations between the
velocity and radius. Here in part II, we have broadened this proof. Many different circular
vortices were produced from several crossings of one linear pair. All emerging vortices were
seen to satisfy the above relations required for robustness, with a good degree of accuracy.
The fusion of two vortices to produce a third was followed. Even then, all three were seen to
basically satisfy these constraints when well separated.
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